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Thm. (Baire Theorem)

A countable union of nowhere dense sets in a
complete metric space has empty interior(

X - complete metric space

An ⊆ X closed and Int(An) = ∅

)
=⇒ Int (

⋃∞
n=1 An) = ∅.

Ex. It is impossible to cover a surface with a countable tangle of curves

Ex. Let X = Q = {q1, q2, ...} with metric d(x , y) = |x − y | and let

An = {qn}. Then An closed, Int(An) = ∅, but
⋃∞

n=1 An = Q. Hence

Int(
⋃∞

n=1 An) = Int(Q) = Q 6= ∅. Why? (because Q is not complete!)

Rem. By the duality between open and closed sets, Baire's theorem

can be equivalently formulated as follows:

A countable intersection of open dense sets in a complete
metric space is a dense set

(
X - complete metric space

Un ⊆ X open and Un = X

)
=⇒

∞⋂
n=1

Un = X .
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Banach-Steinhaus Theorem

Let X be a Banach space and Y a normed space unormowana. For any

familly {Ti}i∈I ⊆ B(X ,Y ) of bounded operators

∀x∈X sup
i∈I
‖Tix‖ <∞ ⇐⇒ sup

i∈I
‖Ti‖ <∞. ⇐=

easy

That is, ∀x∈X the family {Tix}i∈I is bounded in Y (pointwise)
⇐⇒ the family {Ti}i∈I is bounded in B(X ,Y ) (uniformly).

Proof: `=⇒' The sets An := {x ∈ X : supi∈I ‖Tix‖ ¬ n}, n ∈ N, are
closed, because Ti are bounded. By assumption X =

⋃∞
n=1 An. By

Baire thm K (x0, ε) ⊆ An0 for some n0 ∈ N, x0 ∈ X and ε > 0.

For x ∈ X , ‖x‖ = 1, and i ∈ I we have

‖Tix‖ = 2
ε

∥∥Ti

(
ε
2x
)∥∥ = 2

ε

∥∥Ti

(
(x0 +

ε
2x)− x0

)∥∥
¬ 2
ε

∥∥Ti

(
x0 +

ε
2x
)∥∥+ 2

ε ‖Ti (x0)‖
{

x0 +
ε
2
x ∈ K(x0, ε) ⊆ An0

x0 ∈ K(x0, ε) ⊆ An0

}
¬ 2
εn0 +

2
εn0 =

4
εn0. Hence supi∈I ‖Ti‖ ¬ 4

εn0 <∞. �
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Cor. Pointwise limit of a sequence of bounded operators on a
Banach space is a bounded operator. That is, {Tn}∞n=1 ⊆ B(X ,Y )

X is a Banach space
∀x∈X {Tnx}∞n=1 convergent

 =⇒

(
T ∈ B(X ,Y ), where
∀x∈X Tx := lim

n→∞
Tnx

)

Proof: If {Tnx}∞n=1 converges for every x ∈ X , then by putting
Tx := lim

n→∞
Tnx we obtain a linear operator, because the limit is a

linear operation. Moreover, the convergence of the sequence
{Tnx}∞n=1 implies its boundedness, for every x ∈ X . Therefore, by
the Banach�Steinhaus Theorem we have supn∈N ‖Tn‖ <∞.

Moreover

‖Tx‖ = limn→∞ ‖Tnx‖ ¬ supn∈N ‖Tnx‖ ¬ supn∈N ‖Tn‖ · ‖x‖.
Hence T is bounded and ‖T‖ ¬ supn∈N ‖Tn‖ <∞. �
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Def. The weak topology on a normed space X is the weakest

topology for which all functionals in X ∗ are continuous. The basis of

this topology are sets of the form

Uf1,...,fn,ε(x) := {y ∈ X : |fi (y)− fi (x)| < ε, 1 ¬ i ¬ n},

where x ∈ X , f1, ..., fn ∈ X ∗, ε > 0.

Rem. If the sequence {xn}∞n=1 ⊆ X is weakly convergent (i.e.

convergent in the weak topology) to x0 ∈ X , then we write xn
w−→ x0.

We have

xn
w−→ x0 ⇐⇒ ∀f ∈X∗ f (xn) −→ f (x0).

Hahn�Banach theorem implies that the limit of a weakly convergent

sequence is uniquely determined - the weak topology satis�es the

Hausdor� condition.

Rem. The topology on X given by the norm is stronger than the weak

topology (hence the name of the latter): xn
‖·‖−→ x0 =⇒ xn

w−→ x0.
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Ex. If X = H is a Hilbert space, then by the Riesz-Fréchet every

functional f ∈ H∗ is of the form f (x) = 〈x , y〉, for certain y ∈ H.

Hence for every sequence {xn}∞n=1 ⊆ H we have

xn
w−→ x0 ⇐⇒ ∀y∈H 〈xn, y〉 −→ 〈x0, y〉.

For instance, consider an orthonornomal sequence {en}∞n=1 ⊆ H. Then

‖en − em‖2 = ‖en‖2 + 2Re〈en, em〉+ ‖em‖2 = 2, n 6= m.

Hence {en}∞n=1 is not convergent in norm. But it is weakly convergent:

en
w−→ 0.

Indeed, for any y ∈ H, Bessel inequality gives
∑∞

n=1 |〈ei , y〉|2 ¬ ‖y‖2.
Since the series

∑∞
n=1 |〈ei , y〉|2 converges, we get 〈ei , y〉 → 0 = 〈0, y〉.

Hence en
w−→ 0.

The norm is not weakly convergent, as ‖0‖ = 0 < 1 = lim inf
n→∞

‖en‖.

Thm1. Weak topology=norm topology ⇐⇒ dim(X ) <∞.

Thm2. X is re�exive ⇐⇒ {x ∈ X : ‖x‖ ¬ 1} weakly compact.
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Prop. Every weakly convergent sequence is bounded, that is

xn
w−→ x0 =⇒ {xn}∞n=1 bounded in norm.

Moreover, ‖x0‖ ¬ lim inf
n→∞

‖xn‖ (the norm is weakly lower semicontinuous).

Proof: We may treat x ∈ X ⊆ X ∗∗ as the functional i(x) on X ∗,
where i(x)(f ) = f (x). Then ‖i(x)‖ = ‖x‖ and

xn
w−→ x0 ⇐⇒ ∀f ∈X∗ i(xn)(f ) −→ i(x0)(f ).

That is, the weak convergence of the sequence {xn}∞n=1 ⊆ X is

equivalent to the pointwise convergence of the sequence of linear

functionals {i(xn)}∞n=1. Thus if xn
w−→ x0, then by Banach-Steinhaus

thm (see Cor), the sequence {i(xn)}∞n=1 ⊆ X ∗∗ is bounded.

By Hahn-Banach thm there is f ∈ X ∗ such that ‖f ‖ = 1 and

f (x0) = ‖x0‖. Hence, by the weak convergence,

‖x0‖ = f (x0) = lim
n→∞

f (xn) = lim inf
n→∞

f (xn)

¬ lim inf
n→∞

‖f ‖‖xn‖ = lim inf
n→∞

‖xn‖. �
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